Skip to content Skip to navigation

Self-Assembly of Biofunctional Polymer on Graphene Nanoribbons

Clark Atlanta University researchers supported by the NSF PREM project worked on supramolecular self-assembly of biofunctional-modified poly(2 methoxystyrene) on graphene nanoribbons. The bioactive polymer has attracted a considerable interest owing to its versatile properties as a bisosensor. However, the formation of regular patterned structures for the polymer is difficult, which greatly hampers its applications. The combined experimental and theoretical work demonstrates that the glycol modified polymer can self-assemble into structured nanopatterns on graphene nanoribbons with preserved bioactivity. The findings demonstrate that the assembly yields a prospective route to novel nanomaterial systems. The research result was accepted for published in ACS Nano 6, 1011 (2012).

Download this highlight