

JSU-UCSB Partnership for Research and

Education in Material Science

Funded by the National Science Foundation

PREM Faculty MEMBERS

Program Director (PD)

Ray

SI

Jerzy

Ashton

Yu

Hawker

Ram

Gao

Quinton Hill **JSU Team Members**

Pak

Nguyen

UCSB Team Members

Our mission: To foster collaborative, interdisciplinary research and education in the areas of **Multifunctional Nanostructured material** and **Mechanically-Active Hybrid Biomolecular Gels** that will address the future needs of society and will increase the participation of minorities in material science research and education.

Goal and Objectives

Education of next generation material scientists

Developed Multifunctional Material

Gold Nanomaterial

Hybrid gold-polymer composite

CNT/gold hybrid Nanomaterial

Plasmonic core-Magnetic shell

Hollow Multifunctional Nanomaterial

JSU Facilities on Material Characterization

JEOL-1011Transmission Electron Microscope System

Quanta 200 ESEM Environmental Scanning Electron Microscope

What we are lacking?

High Resolution (HR) SEM, TEM and EDX facilities

Our PREM Member First Visit

Kleberg Advanced Microscopy Center

JEOL ARM 200F

Hitachi S-5500

JEOL 2010F

Holders: Nanomechanical and Tomography

Plasma cleaner

Atomic Resolution Microscope JEOL ARM200F

Atomic Resolution Microscope TEM-STEM JEOL-ARM200F with a corrected probe. It is equipped with a CEOS Hexapole Cs corrector and that is capable to reach a resolution of 0.8 Å in the STEM mode and 1.2 A in the TEM mode (no correction) at 200 kV. In addition, spatially resolved elemental analysis by X-ray emission spectroscopy and localized electronic structure measurements by electron energy-loss spectroscopy are included. The flexible condenser system permits convergent beam diffraction and nanodiffraction in TEM and STEM modes. In addition, the microscope has been configured to work at low voltages, 120 and 80 kV with the aberration probe corrector and it is capable to reach sub Angstrom resolution.

In situ TEM experiments can be carried out:

- 1) AFM nanomechanical holder with a piezo sensitivity of 1 nm and a maximum force of 6000 nN
- 2) Tomography holder, which allows a maximum tilting of ±70 degrees, 3D reconstruction and visualization software package integrated to the JEOL-ARM200F microscope.

Facilities: Electron Microscopy

Hitachi S-5500 Scanning electron microscope equipped with STEM detectors in bright field and dark field modes, which register the electrons simultaneously. The SEM/TEM microscope has a field-emission gun with a 0.4 nm of spatial resolution operated at 30 kV. Spatially resolved chemical analysis by X-ray emission spectroscopy is equipped with a solid-staed Bruker, elemental line scanning, 2D mapping are available. Qualitative chemical information can be obtained from the topography of a material by using an automated YAG backscattered electron detector.

Transmission electron microscope JEOL2010F with a high-resolution pole piece 1.9 A. Diffraction contrast (BF and DF) and phase contrast (HRTEM) can be used. Selected area electron diffraction and convergent electron beam diffraction are available.

JEOL-1230 Transmission electron microscope operated at 80 kV. Electron diffraction and diffraction contrast imaging are available.

On the atomic structure of thiolprotected gold nanoparticles

Miguel Jose-Yacaman et. al. , Phys. Chem. Chem. Phys., 2010,12, 11785-11790

Single crystal Au/Ag nanoparticles

Miguel Jose-Yacaman et, al, CrystEngComm, 2010,12, 1090-1095

Research Infrastructure

Characterization Using HR TEM & SEM

JSU TEM

Hitachi S-5500

Iron Oxide Magnetic Core- Gold Plasmonic Shell Nanoparticles

Characterization Using HR TEM & SEM

Iron Magnetic Core- Gold Plasmonic Shell popcorn shape Nanoparticles

Hollow Nanoprism Self Assembly

Separation & Enrichment, Label-Free SERS Imaging and Photothermal Destruction of

MRSA

Collaborative Paper Submitted to Chem. A. Eur. J.

JSU Bio Imaging Facility Helps UTSA PREM Members to Improve Their Biomaterial Research

Brian Yust

Jianhui Yang

Raman Imaging System

J. Am. Chem. Soc., 2012, 134, 8662– 8669

Fluorescence Imaging

Fluorescence Imaging

ACS Nano 2012, 6,1065–1073

Spectroscopy at Nano-Bio Interface Facilities

Second harmonic Generation and Evidence of mutipolar contribution

780 nm excitation

1907 nm excitation

J. Am. Chem. Soc.; 2008, 130, 8038

Chemical Review 2010, 110, 5332–5365

Chem. Commun., 2012, 48, 6034–6036

JSU Facilities for Bacteria & Cell Characterization

Comet Single Cell Assay

FV1000 Laser Scanning Confocal Microscope

Multifunctional Au_{Nanorods}@mSiO₂@Y₂O₃:Er³⁺ Nanoparticles

 $Au_{nanorods} @mSiO_2 @Y_2O_3 : Er^{3+}$

SERS Imaging of Cell

Photothermal Killing

Chemical Society Review, 2012, 41, 3193-3209

Photothermal Killing

Before

After

Our Future Plan

Willie will visit UTSA for one week to use their microscope facilities.

Similarly 1 or 2 students from UTSA-PREM will visit JSU for one week to use our bio-imaging facilities.

Conclusions

We have demonstrated that how PREM-to-PREM interactions can enhance JSU & UTSA PREM materials research and education.

We hope that our example will inspire other PREM members for PREM-to-PREM interactions.

Any Questions? Thank you for your kind attention