

PREM

Fundamental Molecular and Interfacial Design for Next Generation Photovoltaic Systems

Theoretica

LUMC

HOMO

novel interfaces

rerials

anona

PREM People and Concepts

Luis Echegoyen – PI - Chemistry Tunna Baruah - Physics Gabby Gándara - Engineering Michael Irwin - Chemistry Juan Noverón - Chemistry José Nuñez - Chemistry Chintalapalle Ramana (Mech. Eng.) David Zubia – Elec. Eng. Craig Hawker – co-PI - Materials Michael Chabinyc - Materials Kris Delaney - Materials Glenn Fredrickson – Chem. Eng. Dorothy Pak - Materials Javier Read de Alaniz - Chemistry Ram Seshadri - Chemistry Fred Wudl - Chemistry

Investigation of Indium Free Transparent Conducting Oxides for Application in Photovoltaics (C. V. Ramana and R. Seshadri - leaders)

W-Ti-O Thin Films – Structure

N.R. Kalidindi et el., ACS Appl. Mater. Inter. (2011)

W-Ti-O Thin Films – Electrical

N.R. Kalidindi et el., Appl. Phys. Lett. (2010)

Theoretical Work Already Started - Delaney

Summary

WO₃ surface (in progress):

- Work function vs. interface orientation
- Reconstructions & surface termination
- Surface gap states

WO₃ conductivity:

- Electrical character & Eform of Ti doping
- Alternative dopants, especially *p*-type

WO₃/P3HT interface:

- Donor/anode interface alignment vs. orientation
- Structure optimization?

Molecular Dynamics Simulation of Strained, Nanoscale Crystal Growth using Bond Order Potentials (D. Zubia, X. Zhou, and K. Delaney - leaders)

(a) Strained, nanoscale crystal growth of ZnCdTe on CdS, (b) 3D strain partitioning in ZnCdTe/CdS, (c) MD bond-order potential simulation of 10% strained, selective-area growth of CdTe.

Concept and Methodology

Comprehensive Experimental and Simulation Aspects

σ-Alkynyl Complexes of Platinum and Pyridine Amines as Potential Photovoltaic Materials. (J. Nuñez and J. Read de Alaniz - leaders)

Future work

Novel Fullerene Nanostructures and Heterojuction Interfaces (J. Noverón and C.J. Hawker - leaders)

Crystalline fullerene systems designed with large porosities expected to be solvent-filled, and upon desolvation, may allow for post-assembly inclusion structures with semiconductor materials

Redox-Based Methods to Prepare Macroscopic Quantities of New Endohedral Fullerenes and their Derivatives for Photovoltaics (PV) (L. Echegoyen and F. Wudl leaders)

Isomeric Separation of I_h and D_{5h} Sc₃N@C₈₀ by Selective Chemical Oxidation

OSWV of I_h and D_{5h} Sc₃N@C₈₀

Stevenson, Mackey, Coumbe, Phillips, Elliott, and Echegoyen J. Am. Chem. Soc., 129, 6072-6073, 2007

Isomeric Separation of I_h and D_{5h} Sc₃N@C₈₀, and Sc₃N@C₇₈ by Selective Chemical Oxidation

 $\begin{array}{l}@C_{78} \ 6.09\%, @C_{68} \ 3.45\% \\ C_{70} \ 0.62\%, \ C_{60} \ 0.20\%\end{array}$

with 11.02mg salt

Oxidation 1 @C_{80} 94.52% $\mathrm{I_h}$

@ C_{68} 0.38%, C_{70} 5.10%

Reduction 1 @C₈₀ 8.58% I_h + 39.27% D_{5h}

```
@C_{78} 26.67\%, @C_{68} 26.03\%
```


Isomeric Separation of I_h and D_{5h} Sc₃N@C₈₀, and Sc₃N@C₇₈ by Selective Chemical Oxidation

Fullerenes as Donors in Organic Solar Cells?

Feng, Rudolf, Wolfrum, Troeger, Slanina, Akasaka, Nagase, Martín, Ameri, Brabec, and Guldi J. Am. Chem. Soc. **2012**, 134, 12190–12197

Simulation of Charge and Energy Transfer in Organic Photovoltaics (T. Baruah and K. Delaney - leaders)

Work in progress/proposed :

- Model donor-acceptor systems with endohedral Sc₃N@C₈₀ fullerene as acceptor : Electronic structure.
- Fullerene derivatives as acceptors: changes in electronic structure and CT energies.
- Solvent polarization for DA molecular conjugates effect on the CT states.
- Energy transfer rates in DA complexes.
- Small clusters of doped WO₃ its electronic structure and optical properties.

Sc₃NC₈₀-TPP and Sc₃N@C₈₀-ZnTPP Model Compound

- Two conformers of each complex are being studied.
- Figure shows an optimized conformer with ZnTPP facing a 6:6 bond of the fullerene. The complex was optimized at the all-electron generalized gradient level.
- Center-to-center separation: 7.35 Ang.
- DFT HOMO-LUMO gap: 1.05 eV (underestimated in DFT, not actual gap)
- Ground state dipole moment : 0.6 Debye (from fullerene to ZnTPP).
- Further calculations on IP, EA, CT energetics are in progress.

Education and Outreach

(Gabby Gándara and Dorothy Pak)

University of California - Santa Barbara University of Texas at El Paso

Research Experiences for Undergraduates

- Exchange UCSB and UTEP undergraduates for summer REU programs (4 in each direction)
- Mentored research experiences in PREM research groups (Summer 2012: 15 interns in UCSB PREM labs)
- UTEP students included in RISE/CAMP internship cohort
- Participation in skills development and career development workshops and seminars

UCSB-UTEP Undergraduate Colloquium

Connect UTEP and UCSB undergraduates to increase awareness of opportunities at partner institution

- Annual end-of-summer poster session
- Alternate between UCSB and UTEP site
 - At UTEP in connection with COURI Symposium

Materials Science Ambassadors

- PREM graduate students assist with K-12 outreach activities at local schools – based on UTEP program, to be launched at UCSB
- It's a Material World UCSB
- Build-a-Buckyball and Solar Car Workshops - UCSB

Outreach Programs

Materials Science Ambassadors	 Develop Relationship with Math/Science Teachers Service Learning Nexus - Research Shadowing Program
ExciTES Summer Institute	 Summer Camp for 6th – 10th graders Modular Inquiry-based, Team-based Activities
Materials Research Outreach Program	Grad and postdoc poster sessionMeeting and engaging industrial partners

ExciTES = Excellence in Technology, Engineering and Science

Evaluating the Impact of our Programs

Metrics of success

- REU evaluation using URSSA instrument
- Participants continue on to graduate school in science and engineering
- Participants enroll in graduate school at partner site
- Undergraduates participate in conferences and publications
- Graduate students participate in K-12 outreach

