Interfaces: with and without particles

Jeffrey F. Morris Mark D. Shattuck City College of New York

Sidney Nagel University of Chicago

 $\frac{\text{THE UNIVERSITY OF}}{CHICAGO} \text{ NSF-PREM 2013} \\ \text{Director's Meeting} \\$

PREM Focus Areas

IRG = Integrated Research Group

- IRG1 Vapor-liquid and gas-liquid systems
 - Koplik, Watkins, T. Lee, Shattuck, Morris (Maldarelli)
 - Nagel, Zhang, Jaeger

- Kretzschmar, Tu, John, Koplik
- Talapin, K.-Y. Lee, Witten, Jaeger
- IRG3 Particulate materials
 - Morris, Shattuck, Koplik, T. Lee
 - Jaeger, Nagel, Dinner

Particles at Surfaces

Ilona Kretzschmar, Ray Tu --- Ka Yee Lee, Binhua Lin

Applications ightarrow drug delivery, catalysis, sensors, stabilization of foams and emulsions

UofC: K. Y. Lee + Lin labs

Wrinkle-to-fold transition in polyester films (Lee) & gold nanoparticle trilayers (Lin)

CCNY: Kretzschmar + Tu labs

nm- & µm- sized particles

µm complements Å and nm scale at UofC: confirm universality?

Partnership on the Dynamics of Heterogeneous and Particulate Materials DMR 0934206

Wrinkle-to-fold transition

Wrinkles \rightarrow folds observed over 3 decades of size

Partnership on the Dynamics of Heterogeneous and Particulate Materials DMR 0934206

Drop impact and splash

Taehun Lee, Joel Koplik, Jeff Morris, Charles Watkins -- CCNY Sid Nagel, Wendy Zhang -- Chicago

Observations (Chicago group): Drops splash on smooth surface at atmospheric P

Splash vanishes at 1/3 atmospheric P (e.g. for water or ethanol drops)

Question: How can air cause a splash?

Splash (simulation)

Lattice-Boltzmann Simulations, Taehun Lee, CCNY

Splash (experiment)

Experiments: Irmgard Bischofberger, Chicago

Dilute Particle Laden Drop

Roy Furbank, Jeff Morris

Particle-laden flows

Jeff Morris, Mark Shattuck, Taehun Lee ---- Heinrich Jaeger, Wendy Zhang

Droplet breakup

UofC: Nagel, Zhang on Newtonian fluids CCNY: Morris on dilute suspensions

Geometry and Dense Suspensions

Both liquid and particles determine pressure and structure: Meniscus moves particles ←→ Particles scaffold for meniscus Neck (singularity) retains memory of initial conditions.

UofC: Jaeger Quasi-static Experiments

Measure pressure while controlling geometry Tensile Test: How do particle positions create stress-strain curve?

How to relate packing geometry to pressure generated?

Particle-Laden Liquid Bridge

Mark Shattuck CCNY; Marc Miskin Heinrich Jaeger Chicago

Comparison with Experiment

Lattice-Boltzmann Liquid Bridge Kevin Connington, Taehun Lee, Jeff Morris CCNY

Summary

- Interfaces play a significant role in materials development: assembly processes, deposition, coatings
- Splash phenomena remain poorly explained: simulations suggest consideration of *vorticity in the gas (!?)*; beautiful observations in simulation and experiments
- Three-phase flow solver developed: provides access to role of particles in drop formation/impaction processes.